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Abstract – 
Risk propensity, or individuals’ attitude 

toward risk, can highly impact individuals’ decision-
making in high-risk environments since those who 
merely focus on positive consequences associated with 
high-risk acts are more likely to engage in risk-taking 
behaviors. Previous studies identified activation in the 
prefrontal cortex during decision-making under risk 
to be a sign of an individual’s attitude toward risks. 
To investigate whether such past work—prevalent in 
behavioral research domains—translates into 
construction safety, this study conducted an 
experiment in a mixed-reality environment using 
functional near-infrared spectroscopy (fNIRS) 
technology to examine whether positive risk attitudes 
cause individuals to adopt risky construction 
behaviors and whether the activation of the 
prefrontal cortex of the brain can represent such risk 
attitudes. The results show that participants with a 
higher risk propensity had a higher brain activation 
during the risky electrical tasks; these individuals 
merely focused on gains, which motivated them to 
increase their risk-taking behavior and consequently 
experience more electrical accidents. Understanding 
workers’ attitudes toward risk will thus influence 
future understandings of decision behavior under 
risk. 
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1 Introduction 
Despite various efforts to reduce the number of 

incidents occurring within the electrical construction 
industry, this area still experiences a high rate of fatalities, 
representing a 3.75% increase over recent years [1]. In 
part, these fatalities may be sourced in construction 
workers’ behaviors, which can be easily influenced by 
their individual characteristics. Consequently, 
investigating the individual characteristics that can affect 
workers’ unsafe behaviors may help avoid future 
accidents. 

Risk propensity, or one’s attitude toward risks, is one 
influential characteristic that can affect jobsite safety as 
high-risk propensity causes individuals to adopt risky 
behaviors [2]. Previous research highlighted the direct 
connection between risk attitude and risk decision-
making [2,3], the latter of which ties into cost-benefit 
analysis weighing the costs (risks) against the benefits 
(gains) delivered by the behavior. Thus, the extent to 
which one engages in risky behaviors is a function of 
individuals’ positive attitudes (i.e., focused on gains) 
and/or negative attitudes (i.e., focused on losses) related 
to risk consequences [4]. Individuals with positive 
attitudes mostly consider positive consequences over 
negative ones, which stimulates them to take more risks. 

The impacts of risk propensity conceivably manifest 
profoundly within such competitive and dynamic 
workplaces as construction jobsites, since the business 
nature of construction is highly competitive and may turn 
stakeholders’ focus toward gains (e.g., earning more 
money) [5]. In such situations, managers stimulate 
workers by offering extra compensation as an incentive 
to speed up or perform simultaneous tasks in order to 
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offset delays or increase the company’s profits. As a 
result, risk propensity in terms of expecting pleasurable 
outcomes and benefits may guide individuals to engage 
in more risky actions. 

While the impacts of risk propensity in gain-loss 
decision-making under risk have been widely discussed 
in behavioral research domains, there is a paucity of 
research within the construction sector despite the fact 
this industry’s high-risk work environment may be 
considerably impacted by the concept of risk attitude. 
Therefore, this study examined whether perceiving 
greater benefits during risky activities causes workers to 
engage more in risky behaviors on jobsites. To achieve 
this objective, this study asked subjects to perform a 
simulated high-risk electrical activity under conditions 
with varying benefits. The research team then used 
traditional (questionnaires) and emerging neuroimaging 
(functional near-infrared spectroscopy) techniques to 
document subjects’ risk propensity; the latter method 
monitored subjects’ cortical hemodynamic responses 
(i.e., brain activation) during the high-risk situations to 
quantify cognitive appraisals associated with risky 
decisions. Combined, this methodology enabled the team 
to both better understand subjects’ attitudes towards risk 
and discern whether functional near-infrared 
spectroscopy (fNIRS) signals could be considered a 
useful method for studying individual risk attitudes in 
dynamic risky decision-making. The outcomes of this 
research, therefore, deliver both an innovative 
methodology for monitoring construction workers’ real-
time risk propensity and a deeper understanding of 
workers’ attitudes towards risk to enhance evaluations of 
decision-making behaviors under risk. 

2 Background 

2.1 Risk Propensity and Expected 
Consequences 

Generally, risk propensity is defined as individuals’ 
attitudes toward risk and reflects their orientation toward 
taking or avoiding risks [2]. Therefore, risk attitude 
includes both risk-seeking and risk-aversion and signifies 
“the degree to which a person has a favorable or 
unfavorable evaluation or appraisal of a behavior” [6, p. 
188]. 

Risk attitude can be quite influential in explaining 
individuals’ risk-taking behaviors and risk decision-
making. As with the cost-benefit analysis discussed above, 
one’s behavior evaluation will include gains or losses, 
depending squarely on individuals’ attitude toward the risk 
(i.e., risk-seeking or risk-aversion). Workers who are risk-
takers primarily look forward to gaining potential benefits 
from the risky activity, which they perceive as worth any 
associated potential negative consequences [2].  

Previous literature showed that individuals may adopt 
risky behaviors when the balance between the perceived 
losses of a situation and the perceived gains of that 
situation is considered favorable [4]. In a related study, 
Slovic and his colleagues observed that individuals who 
were more engaged in risky activities perceived greater 
associated benefits and also greater control over potential 
losses than those who did not engage in risky activities 
[4]. In one of the recent studies, Hasanzadeh and her 
colleagues examined risk propensity as a factor of 
individuals’ risk-taking behavior in a simulated mixed-
reality environment. They observed that risk propensity 
moderated the relationship between safety protection and 
risk-taking behaviors since individuals with higher risk 
propensity took more risks when protections were in 
place [2,7]. Therefore, it is crucial to investigate the 
substantial differences at play in individuals’ risk attitude 
and how these gain expectancies in non-targeted risky 
events are linked to individuals’ at-risk decisions on 
construction jobsites.  

2.2 Cortical Brain Activation and Decision-
making Correlates 

Previous studies showed that neuroimaging provides 
an excellent understanding of the underlying cognitive 
processes involved in considering trade-offs between 
costs (loss) and benefits (gains) under risky conditions 
[8,9]. The prefrontal cortex (PFC) plays a substantial role 
in these decision-making processes [10]. Particularly, the 
increase of cerebral oxyhemoglobin and blood flow 
within the PFC reflects processing variances, 
uncertainties, risks, expected values, and probabilities [9] 
Furthermore, previous studies showed that increased 
expected benefits of risky actions (greater gain) will 
increase the prefrontal area’s brain activation, 
specifically among risk-seeking individuals (i.e., those 
with higher risk propensity) [11,12]. As such, cortical 
brain activity can functionally reveal the correlation 
between risk and associated benefits and can signify how 
individuals perceive the consequences of risky decisions 
(i.e., whether they focus on gains or losses). Several 
neuroimaging and human behavior studies have 
investigated risk attitude and decision-making under risk 
using cortical brain activation (e.g., [13,14,15]), but there 
is limited research in this field within the construction 
safety domain.  

3 Methodology 
This study examined risk perception and risk 

decision-making during a risky construction activity to 
identify the correlation between risk-taking behaviors, 
expected benefits, and brain cortical responses. To 
accomplish this objective, this study used the 
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transmission and distribution of energized powerlines as 
a high-risk task since linemen are required to work in 
close proximity to high-voltage powerlines while they 
are also at the height [16,17]. We hypothesize that risk 
attitude (i.e., concentrating on expected gains or expected 
losses) serves as a key contributor to stimulating risk-
taking behaviors and exacerbates the likelihood of 
incidents (e.g., experiencing arc flash, which is an 
electrical discharge that includes burns, blasts, and 
electrocution hazards) within high-risk tasks among 
those with high-risk propensity.  

3.1 Experimental Design 
A mixed-reality environment consisting of virtual and 

physical models was developed to simulate an electrical 
task in a U.S. suburban area (Figure 1). The physical 
model included passive haptics (i.e., bucket, hot-stick, 
fall-arrest system, and insulating gloves). The virtual 
model entailed the simulated setting as well as five 
virtual reality trackers attached to the subject’s body to 
capture individuals’ postures and adjust the virtual avatar 
accordingly; these trackers also registered interactive 
behaviors—e.g., simulated electrical arc flash—and the 
virtual reality system included any corresponding visual 
and audio representations to enhance participants’ sense 
of presence within the mixed-reality simulation. 
Environmental modalities, including wind and sound 
effects, were also added to increase realism and subjects’ 
sense of presence. Most of the participants reported a 
high presence score (Mean= 4, SD= 0.5), given a 5-point 
Likert scale post-trial presence questionnaire (with 1 = 
low and 5 = high). This conveys that the developed MR 
environment offered a valid and appropriate framework 
to trigger the naturalistic behaviors of line workers. All 
subjects wore a wireless functional near-infrared 
spectroscopy (fNIRS, Brite) neuroimaging cap so the 
research team could monitor subjects’ decision-making 
and risk attitude while the subjects completed the 
electrical tasks. 

3.2 Data Collection 
Thirty-three healthy subjects—11 females and 22 

males aged 21.3 ± 2 years, with at least 1.5 years of work 
experience in the construction industry—were recruited 
to participate in this study. All procedures were approved 
by Purdue University’s Institutional Review Board (IRB).  

After a 30-minute comprehensive training regarding 
the experimental process and electrical tasks, each 
participant filled out several questionnaires, including the 
cognitive appraisal of risky events (CARE) questionnaire. 
The CARE questionnaire, developed by Fromme et al. 
(1997), evaluates individuals’ expectations of gains (i.e., 
positive outcomes known as PCARE) and losses (i.e., 
negative outcomes known as NCARE) as consequences 
of risky behaviors [18]. Subjects responded to this 
questionnaire based on a 7-point Likert- scale that ranged 
from 1 (not at all likely) to 7 (extremely likely). Their 
responses evaluated the expected positive and negative 
outcomes of six various types of risky behaviors, 
including (I) Illicit drug use, (II) Aggressive and illegal 
behaviors, (III) Risky sexual activities, (IV) Heavy 
drinking, (V) High-risk sports, and (VI) Academic/work 
behaviors. This study considered the positive outcome 
expectancies of subjects (i.e., PCARE) for further 
analysis.  

After completing the questionnaires, participants 
were equipped with the fNIRS cap, and their brain 
cortical responses were captured for 120 seconds as the 
baseline. Thereafter, they were required to complete the 
line replacing task, which included two sub-tasks: 
(1) move the energized powerlines from an old pole to a 
new pole, (2) remove conductor hoods from energized 
lines. The participants were equipped with complete 
safety interventions and performed the task under two 
experimental conditions: (A) normal condition, and (B) 
high-risk with incentive. For this latter, high-risk with 
incentive, condition B, the research team added 
productivity demand, time pressure, and cognitive 
demand to the expectations: subjects were given 10 fewer 

Figure 1. Research framework for real-time mixed-reality environment synchronized with fNIRS  
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seconds than they needed to complete the task under the 
normal condition, and they were asked to complete a 2-
back working memory task simultaneously while they 
performed the main task. Critically, under Condition B, 
participants were told that if they could complete the task 
in a timely manner while completing the secondary task 
accurately, they would receive $10 additional 
compensation. At the end of the experiment, the research 
team conducted a semi-structured interview to assess 
participants’ risk perception within each condition. 

As explained, brain activation manifests as increases 
in both cerebral oxyhemoglobin and blood flow 
throughout the brain, which appears to serve as a proxy 
for risk-seekers concentrating on gains during risky 
decision-making [10]. The arrangement of the fNIRS 
optodes’ locations along with the PFC is demonstrated in 
Figure 1, which covers both right and left hemispheres. 
Specifically, a trajectory of 7 optode channels was 
implemented, which covered mostly the dorsolateral 
prefrontal cortex (DLPFC). The neural activity from the 
hemodynamic response function (HRF) that specifies 
BOLD signals overtime was used for the analysis. 

4 Results and Findings 
This study investigated subjects’ behavioral 

responses and safety-related decisions under risk when 
gains and losses were in place. To do so, the research 
team began by differentiating the 33 participants’ 
responses to the CARE questionnaire across the six 
categories of risk activities, discussed above. Then, 
correlations between the PCARE six categories and the 
PFC activations under Condition B, as well as the 
correlations between the PCARE categories and the 
subjects’ ∆brain activation (i.e., changes in brain 

activation from the normal Condition A to the risky 
Condition B), were identified (Figure 2).  

While only the correlation between subjects’ PCARE 
score and brain activation under Condition B in 

categories II and VI, and their PCARE score and changes 
in brain activation (B - A) in category II are significant, 
all scatterplots demonstrate positive correlations between 
these two factors. Such insight reveals that as participants 
perceived more benefits than harm from being involved 
in irrelevant risky events, they perceived more gains in a 
risky construction task when there is an incentive in place. 

For further analysis, participants were divided into 
two groups based on their average score in each category 
of the PCARE: (1) those more likely to focus on gains 
(high PCARE) versus (2) those less likely to focus on 
gains and more likely to focus on losses (low PCARE). 
Then, the changes in hemodynamic responses (oxy-Hb) 
in Condition B compared to Condition A (i.e., B-A) were 
compared between high-PCARE and low-PCARE 
groups across the six categories. Figure 3 demonstrates 
that, on average, there is more brain activation (changes 
in oxy-Hb) among participants in the high-PCARE 
groups than those in the low-PCARE groups in all six 
risky-activities categories. Moreover, there is a 
significant difference between the average brain 
activation among the high-PCARE group compared to 
the low-PCARE group within category II (i.e., aggressive 
and illegal behaviors). 

 

 
Figure 3. Box plot representing the distribution of brain 
activation (oxy-Hb concentration) in high-PCARE and 
low-PCARE groups  

To examine whether there are significant differences 
in decision dynamics and associated PFC brain activation 
among individuals with positive risk attitudes (high-risk 
propensity group) when they need to complete a risky 
electrical task with (Condition B) and without incentive 
(Condition A), the Oxy-Hb changes were compared 
between the two conditions across all six risky event 
categories. As Table 1 shows, there are statistically 
significant differences in oxy-Hb concentrations in 
PCARE categories II, III, IV, V, VI between the normal 
condition (A) and the risky condition (B) (p-value II = 
0.016, p-value III = 0.048, p-value IV = 0.040, p-value V 
= 0.025, p-value VI = 0.048). Partially significant 
changes in oxy-Hb were identified in PCARE category I 
(p-value I = 0.070). Further investigation of their safety 
performance indicated that those with higher risk 

Figure 2. Correlation among brain activation and different 
categories of PCARE 
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propensity took additional risks under situations with 
heightened risk-benefit dynamics and ended up 
experiencing more electrical arc flashes during the 
experiment.  

 
Table 1. Statistical results comparing changes in brain 

activation of high-risk propensity group between 
Conditions A and B across six PCARE categories 

Cond. P 
CARE MEAN STD Test 

Statistics (t) p-value 

A 
I 

0.471 0.712 
-1.579 0.070** 

B 1.128 1.473 
A 

II 
0.257 0.875 

-2.672 0.016* 

B 1.622 1.421 
A III 0.173 0.562 -1.725 0.048* B 1.000 1.423 
A IV 0.280 0.674 -1.899 0.040* B 0.995 1.311 
A 

V 
0.329 0.560 

-2.154 0.025* B 0.959 1.120 
A 

VI 
0.687 0.640 

-1.832  0.048* 
B 1.314 1.380 

** p-value <0.1, * p-value <0.05 
 

Further, while the mean brain activation values across 
all categories were higher in Condition B than A for 
individuals with lower risk propensity (low-PCARE 
groups), there was no significant difference in oxy-Hb 
between Conditions A and B (p-value > 0.05) (Table 2), 
suggesting those with lower risk propensity will likely 
not take additional risks under situations with heightened 
risk-benefit dynamics.  
 
Table 2. Statistical results comparing brain activation of 
low-PCARE groups within conditions A and B across 

six categories  

Cond. P 
CARE MEAN STD Test 

Statistics (t) p-value 

A I 0.144 0.634 
-1.428 a 0.088 

B 0.694 1.266 
A 

II 
0.180 0.609 

0.003a 0.499 

B 0.192 0.886 
A III 0.240 0.747 

-1.598 a 0.089 B 0.790 1.349 
A IV 0.226 0.732 

-1.337 a 0.102 B 0.755 1.385 
A 

V 
0.164 0.915 

-0.343 a 0.370 B 0.301 1.179 
A 

VI 
0.058 0.583 

-1.151 a 0.134 B 0.386 0.954 
** p-value <0.1, * p-value <0.05 

5 Discussion 
Construction activities are known as high-risk 

activities, so proper perception of risks inherent to the 
surrounding environment is crucial for worker safety [19]. 
However, there are substantial differences among 
individuals in how risk is perceived. Such differences 
especially manifest in how individuals exhibit different 
sensitivities to losses and gains when making decisions 
under risk, a factor rooted in individuals’ various risk 
attitudes.  

This study examined the neural correlates and safety 
performance measures (i.e., number of arc flashes they 
have experienced while completing the task) among 
individuals with different attitudes toward gain and loss 
to assess risk-taking behaviors under varying risk-benefit 
conditions. The findings indicate that there is a positive 
correlation between each category of PCARE and brain 
activation during risky-with incentives tasks; thereby, 
risk attitude modulated brain activation in the prefrontal 
cortices more in participants who perceived greater 
positive consequences from risky actions than in 
participants who perceived more losses from risky 
actions. This finding is well-aligned with other 
neuroimaging studies that reported the involvement of 
PFC in risk decision-making behaviors [20,21]. As an 
example, a related study empirically showed a higher 
brain activity for subjects with more consideration of 
gains than losses  [20]. In addition, previous studies 
observed decreased and increased hemodynamic 
responses in individuals who were focused on losses (i.e., 
having negative attitudes toward risks) versus those who 
mostly considered gains (i.e., having positive attitudes 
toward risks), respectively [9]. Therefore, activation of 
the PFC can serve as a proxy of individuals’ risk attitude: 
Those more focused on gains (i.e., incentives in 
Condition B) will have higher brain activation. 

These correlation results also indicate that subjects 
who are often highly focused on positive outcomes in 
other risky activities (e.g., the thrill of driving while 
intoxicated outweighs the perceived risk of arrest) are 
those who are highly concentrated on gains rather than 
losses in the simulated electrical construction task. Here, 
response generalization theory may come into play, as 
this theory explains that individuals who tend to be 
involved in a targeted risky behavior can also be involved 
in non-targeted risky behaviors [22].  
Problematically, underestimating the risk of a hazardous 
situation increases the likelihood of taking more risks 
[2,7], especially as individuals who have positive 
attitudes toward risks tend to adopt risky behaviors by 
assigning higher expected values to the outcome. In 
contrast, people with negative attitudes perceive lower 
benefits and higher negative outcomes when involved in 
risky actions [2,7]. Well-aligned with this discussion is 
our observed changes in brain activation—i.e., the 
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differences in oxy-Hb concentration from the normal 
condition (A) to the risky condition (B, with incentives). 
These values showed higher average values for the high-
PCARE groups versus low-PCARE groups within each 
category. 

Although the risk level was higher in Condition B due 
to the time pressure and productivity demand—which 
may increase the risk of potential losses (experiencing arc 
flash)—the presence of incentives (i.e., gains) caused 
subjects to concentrate merely on achieving the gains and 
correspondingly increase their risk-taking behavior by 
speeding up to complete the defined task faster to obtain 
the incentive. These participants, who were also grouped 
high in various CARE categories, experienced more arc 
flashes in Condition B. So, the associated gains (i.e., 
additional compensation as an incentive) increased their 
perceived benefits and caused them to overlook losses as 
they found more value in taking risks. Collectively, these 
findings regarding subjects’ assessment of expected 
value (i.e., gain) and harm (i.e., electrical accident) 
provided empirical evidence regarding the contributing 
role of risk attitude in workers’ unsafe behaviors and at-
risk decisions.  

6 Conclusion 
By employing a mixed-reality environment and 

neuroimaging technology, this study empirically 
investigated participants’ risk propensity in a simulated 
high-risk construction scenario when gains and losses 
were in place. Results indicate that oxy-Hb concentration 
captured by fNIRS sensors may serve as a proxy of 
participants’ risk attitudes since this value positively 
correlates with the evaluated PCARE scores. The present 
study also shows that expected value signals (gain) in the 
prefrontal cortex are considerably increased among risk-
seeking individuals, which indicates that the more 
participants focus on gains during a risky situation, the 
greater their brain activation will be. Further, as subjects 
perceived more benefits associated with a situation, they 
valued positive consequences (i.e., gains) over negative 
ones (i.e., losses), which stimulated them to engage in 
greater risk-taking behaviors.  

Together, the findings argue that fNIRS signals are 
reliable to provide behavioral information regarding 
individuals’ risk propensity, decision-making, and risk-
taking behaviors. This study provides insights into 
identifying at-risk workers whose positive attitudes 
toward risky situations may put them at high risk of 
engaging in potentially dangerous activities on jobsites. 
Future studies may incorporate different physiological 
sensors (e.g., Electrodermal activity (EDA)) to see the 
correlation between physiological responses and fNIRS 
signals, in investigating individuals’ risk attitude and 
risk-taking behaviors. Using such knowledge can help in 

suggesting behavioral interventions that incorporate 
educational information regarding risk perception, as a 
modifiable construct, to counteract excessive risk-taking. 
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